skip to main content


Search for: All records

Creators/Authors contains: "Prasad, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 22, 2024
  2. Free, publicly-accessible full text available June 6, 2024
  3. Free, publicly-accessible full text available September 1, 2024
  4. We develop a new framework for designing truth- ful, high-revenue (combinatorial) auctions for limited supply. Our mechanism learns within an instance. It generalizes and improves over previously-studied random-sampling mechanisms. It first samples a participatory group of bidders, then samples several learning groups of bidders from the remaining pool of bidders, learns a high- revenue auction from the learning groups, and fi- nally runs that auction on the participatory group. Previous work on random-sampling mechanisms focused primarily on unlimited supply. Limited supply poses additional significant technical chal- lenges, since allocations of items to bidders must be feasible. We prove guarantees on the performance of our mechanism based on a market-shrinkage term and a new complexity measure we coin par- tition discrepancy. Partition discrepancy simulta- neously measures the intrinsic complexity of the mechanism class and the uniformity of the set of bidders. We then introduce new auction classes that can be parameterized in a way that does not depend on the number of bidders participating, and prove strong guarantees for these classes. We show how our mechanism can be implemented efficiently by leveraging practically-efficient routines for solv- ing winner determination. Finally, we show how to use structural revenue maximization to decide what auction class to use with our framework when there is a constraint on the number of learning groups. 
    more » « less